mtgbot/vendor/github.com/ugorji/go/codec/encode.go

1768 lines
44 KiB
Go
Raw Normal View History

2018-12-24 06:34:13 +00:00
// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
import (
"encoding"
"errors"
"fmt"
"io"
"reflect"
"runtime"
"sort"
"strconv"
"sync"
"time"
)
// defEncByteBufSize is the default size of []byte used
// for bufio buffer or []byte (when nil passed)
const defEncByteBufSize = 1 << 10 // 4:16, 6:64, 8:256, 10:1024
var errEncoderNotInitialized = errors.New("Encoder not initialized")
/*
// encWriter abstracts writing to a byte array or to an io.Writer.
//
//
// Deprecated: Use encWriterSwitch instead.
type encWriter interface {
writeb([]byte)
writestr(string)
writen1(byte)
writen2(byte, byte)
end()
}
*/
// encDriver abstracts the actual codec (binc vs msgpack, etc)
type encDriver interface {
EncodeNil()
EncodeInt(i int64)
EncodeUint(i uint64)
EncodeBool(b bool)
EncodeFloat32(f float32)
EncodeFloat64(f float64)
// encodeExtPreamble(xtag byte, length int)
EncodeRawExt(re *RawExt, e *Encoder)
EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
// Deprecated: try to use EncodeStringEnc instead
EncodeString(c charEncoding, v string)
// c cannot be cRAW
EncodeStringEnc(c charEncoding, v string)
// EncodeSymbol(v string)
// Deprecated: try to use EncodeStringBytesRaw instead
EncodeStringBytes(c charEncoding, v []byte)
EncodeStringBytesRaw(v []byte)
EncodeTime(time.Time)
//encBignum(f *big.Int)
//encStringRunes(c charEncoding, v []rune)
WriteArrayStart(length int)
WriteArrayElem()
WriteArrayEnd()
WriteMapStart(length int)
WriteMapElemKey()
WriteMapElemValue()
WriteMapEnd()
reset()
atEndOfEncode()
}
type encDriverAsis interface {
EncodeAsis(v []byte)
}
type encodeError struct {
codecError
}
func (e encodeError) Error() string {
return fmt.Sprintf("%s encode error: %v", e.name, e.err)
}
type encDriverNoopContainerWriter struct{}
func (encDriverNoopContainerWriter) WriteArrayStart(length int) {}
func (encDriverNoopContainerWriter) WriteArrayElem() {}
func (encDriverNoopContainerWriter) WriteArrayEnd() {}
func (encDriverNoopContainerWriter) WriteMapStart(length int) {}
func (encDriverNoopContainerWriter) WriteMapElemKey() {}
func (encDriverNoopContainerWriter) WriteMapElemValue() {}
func (encDriverNoopContainerWriter) WriteMapEnd() {}
func (encDriverNoopContainerWriter) atEndOfEncode() {}
type encDriverTrackContainerWriter struct {
c containerState
}
func (e *encDriverTrackContainerWriter) WriteArrayStart(length int) { e.c = containerArrayStart }
func (e *encDriverTrackContainerWriter) WriteArrayElem() { e.c = containerArrayElem }
func (e *encDriverTrackContainerWriter) WriteArrayEnd() { e.c = containerArrayEnd }
func (e *encDriverTrackContainerWriter) WriteMapStart(length int) { e.c = containerMapStart }
func (e *encDriverTrackContainerWriter) WriteMapElemKey() { e.c = containerMapKey }
func (e *encDriverTrackContainerWriter) WriteMapElemValue() { e.c = containerMapValue }
func (e *encDriverTrackContainerWriter) WriteMapEnd() { e.c = containerMapEnd }
func (e *encDriverTrackContainerWriter) atEndOfEncode() {}
// type ioEncWriterWriter interface {
// WriteByte(c byte) error
// WriteString(s string) (n int, err error)
// Write(p []byte) (n int, err error)
// }
// EncodeOptions captures configuration options during encode.
type EncodeOptions struct {
// WriterBufferSize is the size of the buffer used when writing.
//
// if > 0, we use a smart buffer internally for performance purposes.
WriterBufferSize int
// ChanRecvTimeout is the timeout used when selecting from a chan.
//
// Configuring this controls how we receive from a chan during the encoding process.
// - If ==0, we only consume the elements currently available in the chan.
// - if <0, we consume until the chan is closed.
// - If >0, we consume until this timeout.
ChanRecvTimeout time.Duration
// StructToArray specifies to encode a struct as an array, and not as a map
StructToArray bool
// Canonical representation means that encoding a value will always result in the same
// sequence of bytes.
//
// This only affects maps, as the iteration order for maps is random.
//
// The implementation MAY use the natural sort order for the map keys if possible:
//
// - If there is a natural sort order (ie for number, bool, string or []byte keys),
// then the map keys are first sorted in natural order and then written
// with corresponding map values to the strema.
// - If there is no natural sort order, then the map keys will first be
// encoded into []byte, and then sorted,
// before writing the sorted keys and the corresponding map values to the stream.
//
Canonical bool
// CheckCircularRef controls whether we check for circular references
// and error fast during an encode.
//
// If enabled, an error is received if a pointer to a struct
// references itself either directly or through one of its fields (iteratively).
//
// This is opt-in, as there may be a performance hit to checking circular references.
CheckCircularRef bool
// RecursiveEmptyCheck controls whether we descend into interfaces, structs and pointers
// when checking if a value is empty.
//
// Note that this may make OmitEmpty more expensive, as it incurs a lot more reflect calls.
RecursiveEmptyCheck bool
// Raw controls whether we encode Raw values.
// This is a "dangerous" option and must be explicitly set.
// If set, we blindly encode Raw values as-is, without checking
// if they are a correct representation of a value in that format.
// If unset, we error out.
Raw bool
// // AsSymbols defines what should be encoded as symbols.
// //
// // Encoding as symbols can reduce the encoded size significantly.
// //
// // However, during decoding, each string to be encoded as a symbol must
// // be checked to see if it has been seen before. Consequently, encoding time
// // will increase if using symbols, because string comparisons has a clear cost.
// //
// // Sample values:
// // AsSymbolNone
// // AsSymbolAll
// // AsSymbolMapStringKeys
// // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
// AsSymbols AsSymbolFlag
}
// ---------------------------------------------
/*
type ioEncStringWriter interface {
WriteString(s string) (n int, err error)
}
// ioEncWriter implements encWriter and can write to an io.Writer implementation
type ioEncWriter struct {
w io.Writer
ww io.Writer
bw io.ByteWriter
sw ioEncStringWriter
fw ioFlusher
b [8]byte
}
func (z *ioEncWriter) reset(w io.Writer) {
z.w = w
var ok bool
if z.bw, ok = w.(io.ByteWriter); !ok {
z.bw = z
}
if z.sw, ok = w.(ioEncStringWriter); !ok {
z.sw = z
}
z.fw, _ = w.(ioFlusher)
z.ww = w
}
func (z *ioEncWriter) WriteByte(b byte) (err error) {
z.b[0] = b
_, err = z.w.Write(z.b[:1])
return
}
func (z *ioEncWriter) WriteString(s string) (n int, err error) {
return z.w.Write(bytesView(s))
}
func (z *ioEncWriter) writeb(bs []byte) {
if _, err := z.ww.Write(bs); err != nil {
panic(err)
}
}
func (z *ioEncWriter) writestr(s string) {
if _, err := z.sw.WriteString(s); err != nil {
panic(err)
}
}
func (z *ioEncWriter) writen1(b byte) {
if err := z.bw.WriteByte(b); err != nil {
panic(err)
}
}
func (z *ioEncWriter) writen2(b1, b2 byte) {
var err error
if err = z.bw.WriteByte(b1); err == nil {
if err = z.bw.WriteByte(b2); err == nil {
return
}
}
panic(err)
}
// func (z *ioEncWriter) writen5(b1, b2, b3, b4, b5 byte) {
// z.b[0], z.b[1], z.b[2], z.b[3], z.b[4] = b1, b2, b3, b4, b5
// if _, err := z.ww.Write(z.b[:5]); err != nil {
// panic(err)
// }
// }
//go:noinline - so *encWriterSwitch.XXX has the bytesEncAppender.XXX inlined
func (z *ioEncWriter) end() {
if z.fw != nil {
if err := z.fw.Flush(); err != nil {
panic(err)
}
}
}
*/
// ---------------------------------------------
// bufioEncWriter
type bufioEncWriter struct {
buf []byte
w io.Writer
n int
bytesBufPooler
_ [3]uint64 // padding
// a int
// b [4]byte
// err
}
func (z *bufioEncWriter) reset(w io.Writer, bufsize int) {
z.w = w
z.n = 0
if bufsize <= 0 {
bufsize = defEncByteBufSize
}
if cap(z.buf) >= bufsize {
z.buf = z.buf[:cap(z.buf)]
} else {
z.bytesBufPooler.end() // potentially return old one to pool
z.buf = z.bytesBufPooler.get(bufsize)
// z.buf = make([]byte, bufsize)
}
}
//go:noinline - flush only called intermittently
func (z *bufioEncWriter) flush() {
n, err := z.w.Write(z.buf[:z.n])
z.n -= n
if z.n > 0 && err == nil {
err = io.ErrShortWrite
}
if err != nil {
if n > 0 && z.n > 0 {
copy(z.buf, z.buf[n:z.n+n])
}
panic(err)
}
}
func (z *bufioEncWriter) writeb(s []byte) {
LOOP:
a := len(z.buf) - z.n
if len(s) > a {
z.n += copy(z.buf[z.n:], s[:a])
s = s[a:]
z.flush()
goto LOOP
}
z.n += copy(z.buf[z.n:], s)
}
func (z *bufioEncWriter) writestr(s string) {
// z.writeb(bytesView(s)) // inlined below
LOOP:
a := len(z.buf) - z.n
if len(s) > a {
z.n += copy(z.buf[z.n:], s[:a])
s = s[a:]
z.flush()
goto LOOP
}
z.n += copy(z.buf[z.n:], s)
}
func (z *bufioEncWriter) writen1(b1 byte) {
if 1 > len(z.buf)-z.n {
z.flush()
}
z.buf[z.n] = b1
z.n++
}
func (z *bufioEncWriter) writen2(b1, b2 byte) {
if 2 > len(z.buf)-z.n {
z.flush()
}
z.buf[z.n+1] = b2
z.buf[z.n] = b1
z.n += 2
}
func (z *bufioEncWriter) end() {
if z.n > 0 {
z.flush()
}
}
// ---------------------------------------------
// bytesEncAppender implements encWriter and can write to an byte slice.
type bytesEncAppender struct {
b []byte
out *[]byte
}
func (z *bytesEncAppender) writeb(s []byte) {
z.b = append(z.b, s...)
}
func (z *bytesEncAppender) writestr(s string) {
z.b = append(z.b, s...)
}
func (z *bytesEncAppender) writen1(b1 byte) {
z.b = append(z.b, b1)
}
func (z *bytesEncAppender) writen2(b1, b2 byte) {
z.b = append(z.b, b1, b2)
}
func (z *bytesEncAppender) end() {
*(z.out) = z.b
}
func (z *bytesEncAppender) reset(in []byte, out *[]byte) {
z.b = in[:0]
z.out = out
}
// ---------------------------------------------
func (e *Encoder) rawExt(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeRawExt(rv2i(rv).(*RawExt), e)
}
func (e *Encoder) ext(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeExt(rv2i(rv), f.xfTag, f.xfFn, e)
}
func (e *Encoder) selferMarshal(f *codecFnInfo, rv reflect.Value) {
rv2i(rv).(Selfer).CodecEncodeSelf(e)
}
func (e *Encoder) binaryMarshal(f *codecFnInfo, rv reflect.Value) {
bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
e.marshalRaw(bs, fnerr)
}
func (e *Encoder) textMarshal(f *codecFnInfo, rv reflect.Value) {
bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
e.marshalUtf8(bs, fnerr)
}
func (e *Encoder) jsonMarshal(f *codecFnInfo, rv reflect.Value) {
bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
e.marshalAsis(bs, fnerr)
}
func (e *Encoder) raw(f *codecFnInfo, rv reflect.Value) {
e.rawBytes(rv2i(rv).(Raw))
}
func (e *Encoder) kInvalid(f *codecFnInfo, rv reflect.Value) {
e.e.EncodeNil()
}
func (e *Encoder) kErr(f *codecFnInfo, rv reflect.Value) {
e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
}
func (e *Encoder) kSlice(f *codecFnInfo, rv reflect.Value) {
ti := f.ti
ee := e.e
// array may be non-addressable, so we have to manage with care
// (don't call rv.Bytes, rv.Slice, etc).
// E.g. type struct S{B [2]byte};
// Encode(S{}) will bomb on "panic: slice of unaddressable array".
if f.seq != seqTypeArray {
if rv.IsNil() {
ee.EncodeNil()
return
}
// If in this method, then there was no extension function defined.
// So it's okay to treat as []byte.
if ti.rtid == uint8SliceTypId {
ee.EncodeStringBytesRaw(rv.Bytes())
return
}
}
if f.seq == seqTypeChan && ti.chandir&uint8(reflect.RecvDir) == 0 {
e.errorf("send-only channel cannot be encoded")
}
elemsep := e.esep
rtelem := ti.elem
rtelemIsByte := uint8TypId == rt2id(rtelem) // NOT rtelem.Kind() == reflect.Uint8
var l int
// if a slice, array or chan of bytes, treat specially
if rtelemIsByte {
switch f.seq {
case seqTypeSlice:
ee.EncodeStringBytesRaw(rv.Bytes())
case seqTypeArray:
l = rv.Len()
if rv.CanAddr() {
ee.EncodeStringBytesRaw(rv.Slice(0, l).Bytes())
} else {
var bs []byte
if l <= cap(e.b) {
bs = e.b[:l]
} else {
bs = make([]byte, l)
}
reflect.Copy(reflect.ValueOf(bs), rv)
ee.EncodeStringBytesRaw(bs)
}
case seqTypeChan:
// do not use range, so that the number of elements encoded
// does not change, and encoding does not hang waiting on someone to close chan.
// for b := range rv2i(rv).(<-chan byte) { bs = append(bs, b) }
// ch := rv2i(rv).(<-chan byte) // fix error - that this is a chan byte, not a <-chan byte.
if rv.IsNil() {
ee.EncodeNil()
break
}
bs := e.b[:0]
irv := rv2i(rv)
ch, ok := irv.(<-chan byte)
if !ok {
ch = irv.(chan byte)
}
L1:
switch timeout := e.h.ChanRecvTimeout; {
case timeout == 0: // only consume available
for {
select {
case b := <-ch:
bs = append(bs, b)
default:
break L1
}
}
case timeout > 0: // consume until timeout
tt := time.NewTimer(timeout)
for {
select {
case b := <-ch:
bs = append(bs, b)
case <-tt.C:
// close(tt.C)
break L1
}
}
default: // consume until close
for b := range ch {
bs = append(bs, b)
}
}
ee.EncodeStringBytesRaw(bs)
}
return
}
// if chan, consume chan into a slice, and work off that slice.
if f.seq == seqTypeChan {
rvcs := reflect.Zero(reflect.SliceOf(rtelem))
timeout := e.h.ChanRecvTimeout
if timeout < 0 { // consume until close
for {
recv, recvOk := rv.Recv()
if !recvOk {
break
}
rvcs = reflect.Append(rvcs, recv)
}
} else {
cases := make([]reflect.SelectCase, 2)
cases[0] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: rv}
if timeout == 0 {
cases[1] = reflect.SelectCase{Dir: reflect.SelectDefault}
} else {
tt := time.NewTimer(timeout)
cases[1] = reflect.SelectCase{Dir: reflect.SelectRecv, Chan: reflect.ValueOf(tt.C)}
}
for {
chosen, recv, recvOk := reflect.Select(cases)
if chosen == 1 || !recvOk {
break
}
rvcs = reflect.Append(rvcs, recv)
}
}
rv = rvcs // TODO: ensure this doesn't mess up anywhere that rv of kind chan is expected
}
l = rv.Len()
if ti.mbs {
if l%2 == 1 {
e.errorf("mapBySlice requires even slice length, but got %v", l)
return
}
ee.WriteMapStart(l / 2)
} else {
ee.WriteArrayStart(l)
}
if l > 0 {
var fn *codecFn
for rtelem.Kind() == reflect.Ptr {
rtelem = rtelem.Elem()
}
// if kind is reflect.Interface, do not pre-determine the
// encoding type, because preEncodeValue may break it down to
// a concrete type and kInterface will bomb.
if rtelem.Kind() != reflect.Interface {
fn = e.h.fn(rtelem, true, true)
}
for j := 0; j < l; j++ {
if elemsep {
if ti.mbs {
if j%2 == 0 {
ee.WriteMapElemKey()
} else {
ee.WriteMapElemValue()
}
} else {
ee.WriteArrayElem()
}
}
e.encodeValue(rv.Index(j), fn, true)
}
}
if ti.mbs {
ee.WriteMapEnd()
} else {
ee.WriteArrayEnd()
}
}
func (e *Encoder) kStructNoOmitempty(f *codecFnInfo, rv reflect.Value) {
fti := f.ti
tisfi := fti.sfiSrc
toMap := !(fti.toArray || e.h.StructToArray)
if toMap {
tisfi = fti.sfiSort
}
ee := e.e
sfn := structFieldNode{v: rv, update: false}
if toMap {
ee.WriteMapStart(len(tisfi))
if e.esep {
for _, si := range tisfi {
ee.WriteMapElemKey()
// ee.EncodeStringEnc(cUTF8, si.encName)
e.kStructFieldKey(fti.keyType, si)
ee.WriteMapElemValue()
e.encodeValue(sfn.field(si), nil, true)
}
} else {
for _, si := range tisfi {
// ee.EncodeStringEnc(cUTF8, si.encName)
e.kStructFieldKey(fti.keyType, si)
e.encodeValue(sfn.field(si), nil, true)
}
}
ee.WriteMapEnd()
} else {
ee.WriteArrayStart(len(tisfi))
if e.esep {
for _, si := range tisfi {
ee.WriteArrayElem()
e.encodeValue(sfn.field(si), nil, true)
}
} else {
for _, si := range tisfi {
e.encodeValue(sfn.field(si), nil, true)
}
}
ee.WriteArrayEnd()
}
}
func (e *Encoder) kStructFieldKey(keyType valueType, s *structFieldInfo) {
var m must
// use if-else-if, not switch (which compiles to binary-search)
// since keyType is typically valueTypeString, branch prediction is pretty good.
if keyType == valueTypeString {
if e.js && s.encNameAsciiAlphaNum { // keyType == valueTypeString
e.w.writen1('"')
e.w.writestr(s.encName)
e.w.writen1('"')
} else { // keyType == valueTypeString
e.e.EncodeStringEnc(cUTF8, s.encName)
}
} else if keyType == valueTypeInt {
e.e.EncodeInt(m.Int(strconv.ParseInt(s.encName, 10, 64)))
} else if keyType == valueTypeUint {
e.e.EncodeUint(m.Uint(strconv.ParseUint(s.encName, 10, 64)))
} else if keyType == valueTypeFloat {
e.e.EncodeFloat64(m.Float(strconv.ParseFloat(s.encName, 64)))
}
}
func (e *Encoder) kStructFieldKeyName(keyType valueType, encName string) {
var m must
// use if-else-if, not switch (which compiles to binary-search)
// since keyType is typically valueTypeString, branch prediction is pretty good.
if keyType == valueTypeString {
e.e.EncodeStringEnc(cUTF8, encName)
} else if keyType == valueTypeInt {
e.e.EncodeInt(m.Int(strconv.ParseInt(encName, 10, 64)))
} else if keyType == valueTypeUint {
e.e.EncodeUint(m.Uint(strconv.ParseUint(encName, 10, 64)))
} else if keyType == valueTypeFloat {
e.e.EncodeFloat64(m.Float(strconv.ParseFloat(encName, 64)))
}
}
func (e *Encoder) kStruct(f *codecFnInfo, rv reflect.Value) {
fti := f.ti
elemsep := e.esep
tisfi := fti.sfiSrc
var newlen int
toMap := !(fti.toArray || e.h.StructToArray)
var mf map[string]interface{}
if f.ti.mf {
mf = rv2i(rv).(MissingFielder).CodecMissingFields()
toMap = true
newlen += len(mf)
} else if f.ti.mfp {
if rv.CanAddr() {
mf = rv2i(rv.Addr()).(MissingFielder).CodecMissingFields()
} else {
// make a new addressable value of same one, and use it
rv2 := reflect.New(rv.Type())
rv2.Elem().Set(rv)
mf = rv2i(rv2).(MissingFielder).CodecMissingFields()
}
toMap = true
newlen += len(mf)
}
// if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
if toMap {
tisfi = fti.sfiSort
}
newlen += len(tisfi)
ee := e.e
// Use sync.Pool to reduce allocating slices unnecessarily.
// The cost of sync.Pool is less than the cost of new allocation.
//
// Each element of the array pools one of encStructPool(8|16|32|64).
// It allows the re-use of slices up to 64 in length.
// A performance cost of encoding structs was collecting
// which values were empty and should be omitted.
// We needed slices of reflect.Value and string to collect them.
// This shared pool reduces the amount of unnecessary creation we do.
// The cost is that of locking sometimes, but sync.Pool is efficient
// enough to reduce thread contention.
var spool *sync.Pool
var poolv interface{}
var fkvs []sfiRv
// fmt.Printf(">>>>>>>>>>>>>> encode.kStruct: newlen: %d\n", newlen)
if newlen < 0 { // bounds-check-elimination
// cannot happen // here for bounds-check-elimination
} else if newlen <= 8 {
spool, poolv = pool.sfiRv8()
fkvs = poolv.(*[8]sfiRv)[:newlen]
} else if newlen <= 16 {
spool, poolv = pool.sfiRv16()
fkvs = poolv.(*[16]sfiRv)[:newlen]
} else if newlen <= 32 {
spool, poolv = pool.sfiRv32()
fkvs = poolv.(*[32]sfiRv)[:newlen]
} else if newlen <= 64 {
spool, poolv = pool.sfiRv64()
fkvs = poolv.(*[64]sfiRv)[:newlen]
} else if newlen <= 128 {
spool, poolv = pool.sfiRv128()
fkvs = poolv.(*[128]sfiRv)[:newlen]
} else {
fkvs = make([]sfiRv, newlen)
}
var kv sfiRv
recur := e.h.RecursiveEmptyCheck
sfn := structFieldNode{v: rv, update: false}
newlen = 0
for _, si := range tisfi {
// kv.r = si.field(rv, false)
kv.r = sfn.field(si)
if toMap {
if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
continue
}
kv.v = si // si.encName
} else {
// use the zero value.
// if a reference or struct, set to nil (so you do not output too much)
if si.omitEmpty() && isEmptyValue(kv.r, e.h.TypeInfos, recur, recur) {
switch kv.r.Kind() {
case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array, reflect.Map, reflect.Slice:
kv.r = reflect.Value{} //encode as nil
}
}
}
fkvs[newlen] = kv
newlen++
}
fkvs = fkvs[:newlen]
var mflen int
for k, v := range mf {
if k == "" {
delete(mf, k)
continue
}
if fti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur, recur) {
delete(mf, k)
continue
}
mflen++
}
var j int
if toMap {
ee.WriteMapStart(newlen + mflen)
if elemsep {
for j = 0; j < len(fkvs); j++ {
kv = fkvs[j]
ee.WriteMapElemKey()
// ee.EncodeStringEnc(cUTF8, kv.v)
e.kStructFieldKey(fti.keyType, kv.v)
ee.WriteMapElemValue()
e.encodeValue(kv.r, nil, true)
}
} else {
for j = 0; j < len(fkvs); j++ {
kv = fkvs[j]
// ee.EncodeStringEnc(cUTF8, kv.v)
e.kStructFieldKey(fti.keyType, kv.v)
e.encodeValue(kv.r, nil, true)
}
}
// now, add the others
for k, v := range mf {
ee.WriteMapElemKey()
e.kStructFieldKeyName(fti.keyType, k)
ee.WriteMapElemValue()
e.encode(v)
}
ee.WriteMapEnd()
} else {
ee.WriteArrayStart(newlen)
if elemsep {
for j = 0; j < len(fkvs); j++ {
ee.WriteArrayElem()
e.encodeValue(fkvs[j].r, nil, true)
}
} else {
for j = 0; j < len(fkvs); j++ {
e.encodeValue(fkvs[j].r, nil, true)
}
}
ee.WriteArrayEnd()
}
// do not use defer. Instead, use explicit pool return at end of function.
// defer has a cost we are trying to avoid.
// If there is a panic and these slices are not returned, it is ok.
if spool != nil {
spool.Put(poolv)
}
}
func (e *Encoder) kMap(f *codecFnInfo, rv reflect.Value) {
ee := e.e
if rv.IsNil() {
ee.EncodeNil()
return
}
l := rv.Len()
ee.WriteMapStart(l)
if l == 0 {
ee.WriteMapEnd()
return
}
// var asSymbols bool
// determine the underlying key and val encFn's for the map.
// This eliminates some work which is done for each loop iteration i.e.
// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
//
// However, if kind is reflect.Interface, do not pre-determine the
// encoding type, because preEncodeValue may break it down to
// a concrete type and kInterface will bomb.
var keyFn, valFn *codecFn
ti := f.ti
rtkey0 := ti.key
rtkey := rtkey0
rtval0 := ti.elem
rtval := rtval0
// rtkeyid := rt2id(rtkey0)
for rtval.Kind() == reflect.Ptr {
rtval = rtval.Elem()
}
if rtval.Kind() != reflect.Interface {
valFn = e.h.fn(rtval, true, true)
}
mks := rv.MapKeys()
if e.h.Canonical {
e.kMapCanonical(rtkey, rv, mks, valFn)
ee.WriteMapEnd()
return
}
var keyTypeIsString = stringTypId == rt2id(rtkey0) // rtkeyid
if !keyTypeIsString {
for rtkey.Kind() == reflect.Ptr {
rtkey = rtkey.Elem()
}
if rtkey.Kind() != reflect.Interface {
// rtkeyid = rt2id(rtkey)
keyFn = e.h.fn(rtkey, true, true)
}
}
// for j, lmks := 0, len(mks); j < lmks; j++ {
for j := range mks {
if e.esep {
ee.WriteMapElemKey()
}
if keyTypeIsString {
ee.EncodeStringEnc(cUTF8, mks[j].String())
} else {
e.encodeValue(mks[j], keyFn, true)
}
if e.esep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mks[j]), valFn, true)
}
ee.WriteMapEnd()
}
func (e *Encoder) kMapCanonical(rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *codecFn) {
ee := e.e
elemsep := e.esep
// we previously did out-of-band if an extension was registered.
// This is not necessary, as the natural kind is sufficient for ordering.
switch rtkey.Kind() {
case reflect.Bool:
mksv := make([]boolRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Bool()
}
sort.Sort(boolRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeBool(mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.String:
mksv := make([]stringRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.String()
}
sort.Sort(stringRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeStringEnc(cUTF8, mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
mksv := make([]uintRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Uint()
}
sort.Sort(uintRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeUint(mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
mksv := make([]intRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Int()
}
sort.Sort(intRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeInt(mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.Float32:
mksv := make([]floatRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Float()
}
sort.Sort(floatRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeFloat32(float32(mksv[i].v))
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.Float64:
mksv := make([]floatRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = k.Float()
}
sort.Sort(floatRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeFloat64(mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
case reflect.Struct:
if rv.Type() == timeTyp {
mksv := make([]timeRv, len(mks))
for i, k := range mks {
v := &mksv[i]
v.r = k
v.v = rv2i(k).(time.Time)
}
sort.Sort(timeRvSlice(mksv))
for i := range mksv {
if elemsep {
ee.WriteMapElemKey()
}
ee.EncodeTime(mksv[i].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksv[i].r), valFn, true)
}
break
}
fallthrough
default:
// out-of-band
// first encode each key to a []byte first, then sort them, then record
var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
e2 := NewEncoderBytes(&mksv, e.hh)
mksbv := make([]bytesRv, len(mks))
for i, k := range mks {
v := &mksbv[i]
l := len(mksv)
e2.MustEncode(k)
v.r = k
v.v = mksv[l:]
}
sort.Sort(bytesRvSlice(mksbv))
for j := range mksbv {
if elemsep {
ee.WriteMapElemKey()
}
e.asis(mksbv[j].v)
if elemsep {
ee.WriteMapElemValue()
}
e.encodeValue(rv.MapIndex(mksbv[j].r), valFn, true)
}
}
}
// // --------------------------------------------------
type encWriterSwitch struct {
// wi *ioEncWriter
wb bytesEncAppender
wf *bufioEncWriter
// typ entryType
bytes bool // encoding to []byte
esep bool // whether it has elem separators
isas bool // whether e.as != nil
js bool // is json encoder?
be bool // is binary encoder?
_ [2]byte // padding
// _ [2]uint64 // padding
// _ uint64 // padding
}
func (z *encWriterSwitch) writeb(s []byte) {
if z.bytes {
z.wb.writeb(s)
} else {
z.wf.writeb(s)
}
}
func (z *encWriterSwitch) writestr(s string) {
if z.bytes {
z.wb.writestr(s)
} else {
z.wf.writestr(s)
}
}
func (z *encWriterSwitch) writen1(b1 byte) {
if z.bytes {
z.wb.writen1(b1)
} else {
z.wf.writen1(b1)
}
}
func (z *encWriterSwitch) writen2(b1, b2 byte) {
if z.bytes {
z.wb.writen2(b1, b2)
} else {
z.wf.writen2(b1, b2)
}
}
func (z *encWriterSwitch) end() {
if z.bytes {
z.wb.end()
} else {
z.wf.end()
}
}
/*
// ------------------------------------------
func (z *encWriterSwitch) writeb(s []byte) {
switch z.typ {
case entryTypeBytes:
z.wb.writeb(s)
case entryTypeIo:
z.wi.writeb(s)
default:
z.wf.writeb(s)
}
}
func (z *encWriterSwitch) writestr(s string) {
switch z.typ {
case entryTypeBytes:
z.wb.writestr(s)
case entryTypeIo:
z.wi.writestr(s)
default:
z.wf.writestr(s)
}
}
func (z *encWriterSwitch) writen1(b1 byte) {
switch z.typ {
case entryTypeBytes:
z.wb.writen1(b1)
case entryTypeIo:
z.wi.writen1(b1)
default:
z.wf.writen1(b1)
}
}
func (z *encWriterSwitch) writen2(b1, b2 byte) {
switch z.typ {
case entryTypeBytes:
z.wb.writen2(b1, b2)
case entryTypeIo:
z.wi.writen2(b1, b2)
default:
z.wf.writen2(b1, b2)
}
}
func (z *encWriterSwitch) end() {
switch z.typ {
case entryTypeBytes:
z.wb.end()
case entryTypeIo:
z.wi.end()
default:
z.wf.end()
}
}
// ------------------------------------------
func (z *encWriterSwitch) writeb(s []byte) {
if z.bytes {
z.wb.writeb(s)
} else {
z.wi.writeb(s)
}
}
func (z *encWriterSwitch) writestr(s string) {
if z.bytes {
z.wb.writestr(s)
} else {
z.wi.writestr(s)
}
}
func (z *encWriterSwitch) writen1(b1 byte) {
if z.bytes {
z.wb.writen1(b1)
} else {
z.wi.writen1(b1)
}
}
func (z *encWriterSwitch) writen2(b1, b2 byte) {
if z.bytes {
z.wb.writen2(b1, b2)
} else {
z.wi.writen2(b1, b2)
}
}
func (z *encWriterSwitch) end() {
if z.bytes {
z.wb.end()
} else {
z.wi.end()
}
}
*/
// Encoder writes an object to an output stream in a supported format.
//
// Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
// concurrently in multiple goroutines.
//
// However, as Encoder could be allocation heavy to initialize, a Reset method is provided
// so its state can be reused to decode new input streams repeatedly.
// This is the idiomatic way to use.
type Encoder struct {
panicHdl
// hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
e encDriver
// NOTE: Encoder shouldn't call it's write methods,
// as the handler MAY need to do some coordination.
w *encWriterSwitch
// bw *bufio.Writer
as encDriverAsis
err error
h *BasicHandle
hh Handle
// ---- cpu cache line boundary? + 3
encWriterSwitch
ci set
// Extensions can call Encode() within a current Encode() call.
// We need to know when the top level Encode() call returns,
// so we can decide whether to Release() or not.
calls uint16 // what depth in mustEncode are we in now.
b [(5 * 8) - 2]byte // for encoding chan or (non-addressable) [N]byte
// ---- writable fields during execution --- *try* to keep in sep cache line
// ---- cpu cache line boundary?
// b [scratchByteArrayLen]byte
// _ [cacheLineSize - scratchByteArrayLen]byte // padding
// b [cacheLineSize - (8 * 0)]byte // used for encoding a chan or (non-addressable) array of bytes
}
// NewEncoder returns an Encoder for encoding into an io.Writer.
//
// For efficiency, Users are encouraged to configure WriterBufferSize on the handle
// OR pass in a memory buffered writer (eg bufio.Writer, bytes.Buffer).
func NewEncoder(w io.Writer, h Handle) *Encoder {
e := newEncoder(h)
e.Reset(w)
return e
}
// NewEncoderBytes returns an encoder for encoding directly and efficiently
// into a byte slice, using zero-copying to temporary slices.
//
// It will potentially replace the output byte slice pointed to.
// After encoding, the out parameter contains the encoded contents.
func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
e := newEncoder(h)
e.ResetBytes(out)
return e
}
func newEncoder(h Handle) *Encoder {
e := &Encoder{h: basicHandle(h), err: errEncoderNotInitialized}
e.bytes = true
if useFinalizers {
runtime.SetFinalizer(e, (*Encoder).finalize)
// xdebugf(">>>> new(Encoder) with finalizer")
}
e.w = &e.encWriterSwitch
e.hh = h
e.esep = h.hasElemSeparators()
return e
}
func (e *Encoder) resetCommon() {
// e.w = &e.encWriterSwitch
if e.e == nil || e.hh.recreateEncDriver(e.e) {
e.e = e.hh.newEncDriver(e)
e.as, e.isas = e.e.(encDriverAsis)
// e.cr, _ = e.e.(containerStateRecv)
}
e.be = e.hh.isBinary()
_, e.js = e.hh.(*JsonHandle)
e.e.reset()
e.err = nil
e.calls = 0
}
// Reset resets the Encoder with a new output stream.
//
// This accommodates using the state of the Encoder,
// where it has "cached" information about sub-engines.
func (e *Encoder) Reset(w io.Writer) {
if w == nil {
return
}
// var ok bool
e.bytes = false
if e.wf == nil {
e.wf = new(bufioEncWriter)
}
// e.typ = entryTypeUnset
// if e.h.WriterBufferSize > 0 {
// // bw := bufio.NewWriterSize(w, e.h.WriterBufferSize)
// // e.wi.bw = bw
// // e.wi.sw = bw
// // e.wi.fw = bw
// // e.wi.ww = bw
// if e.wf == nil {
// e.wf = new(bufioEncWriter)
// }
// e.wf.reset(w, e.h.WriterBufferSize)
// e.typ = entryTypeBufio
// } else {
// if e.wi == nil {
// e.wi = new(ioEncWriter)
// }
// e.wi.reset(w)
// e.typ = entryTypeIo
// }
e.wf.reset(w, e.h.WriterBufferSize)
// e.typ = entryTypeBufio
// e.w = e.wi
e.resetCommon()
}
// ResetBytes resets the Encoder with a new destination output []byte.
func (e *Encoder) ResetBytes(out *[]byte) {
if out == nil {
return
}
var in []byte = *out
if in == nil {
in = make([]byte, defEncByteBufSize)
}
e.bytes = true
// e.typ = entryTypeBytes
e.wb.reset(in, out)
// e.w = &e.wb
e.resetCommon()
}
// Encode writes an object into a stream.
//
// Encoding can be configured via the struct tag for the fields.
// The key (in the struct tags) that we look at is configurable.
//
// By default, we look up the "codec" key in the struct field's tags,
// and fall bak to the "json" key if "codec" is absent.
// That key in struct field's tag value is the key name,
// followed by an optional comma and options.
//
// To set an option on all fields (e.g. omitempty on all fields), you
// can create a field called _struct, and set flags on it. The options
// which can be set on _struct are:
// - omitempty: so all fields are omitted if empty
// - toarray: so struct is encoded as an array
// - int: so struct key names are encoded as signed integers (instead of strings)
// - uint: so struct key names are encoded as unsigned integers (instead of strings)
// - float: so struct key names are encoded as floats (instead of strings)
// More details on these below.
//
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
// - the field's tag is "-", OR
// - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
//
// When encoding as a map, the first string in the tag (before the comma)
// is the map key string to use when encoding.
// ...
// This key is typically encoded as a string.
// However, there are instances where the encoded stream has mapping keys encoded as numbers.
// For example, some cbor streams have keys as integer codes in the stream, but they should map
// to fields in a structured object. Consequently, a struct is the natural representation in code.
// For these, configure the struct to encode/decode the keys as numbers (instead of string).
// This is done with the int,uint or float option on the _struct field (see above).
//
// However, struct values may encode as arrays. This happens when:
// - StructToArray Encode option is set, OR
// - the tag on the _struct field sets the "toarray" option
// Note that omitempty is ignored when encoding struct values as arrays,
// as an entry must be encoded for each field, to maintain its position.
//
// Values with types that implement MapBySlice are encoded as stream maps.
//
// The empty values (for omitempty option) are false, 0, any nil pointer
// or interface value, and any array, slice, map, or string of length zero.
//
// Anonymous fields are encoded inline except:
// - the struct tag specifies a replacement name (first value)
// - the field is of an interface type
//
// Examples:
//
// // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
// type MyStruct struct {
// _struct bool `codec:",omitempty"` //set omitempty for every field
// Field1 string `codec:"-"` //skip this field
// Field2 int `codec:"myName"` //Use key "myName" in encode stream
// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
// io.Reader //use key "Reader".
// MyStruct `codec:"my1" //use key "my1".
// MyStruct //inline it
// ...
// }
//
// type MyStruct struct {
// _struct bool `codec:",toarray"` //encode struct as an array
// }
//
// type MyStruct struct {
// _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
// Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
// Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
// }
//
// The mode of encoding is based on the type of the value. When a value is seen:
// - If a Selfer, call its CodecEncodeSelf method
// - If an extension is registered for it, call that extension function
// - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
// - Else encode it based on its reflect.Kind
//
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
// Some formats support symbols (e.g. binc) and will properly encode the string
// only once in the stream, and use a tag to refer to it thereafter.
func (e *Encoder) Encode(v interface{}) (err error) {
// tried to use closure, as runtime optimizes defer with no params.
// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
// defer func() { e.deferred(&err) }() }
// { x, y := e, &err; defer func() { x.deferred(y) }() }
if e.err != nil {
return e.err
}
if recoverPanicToErr {
defer func() {
e.w.end()
if x := recover(); x != nil {
panicValToErr(e, x, &e.err)
err = e.err
}
}()
}
// defer e.deferred(&err)
e.mustEncode(v)
return
}
// MustEncode is like Encode, but panics if unable to Encode.
// This provides insight to the code location that triggered the error.
func (e *Encoder) MustEncode(v interface{}) {
if e.err != nil {
panic(e.err)
}
e.mustEncode(v)
}
func (e *Encoder) mustEncode(v interface{}) {
e.calls++
e.encode(v)
e.e.atEndOfEncode()
e.w.end()
e.calls--
if !e.h.ExplicitRelease && e.calls == 0 {
e.Release()
}
}
// func (e *Encoder) deferred(err1 *error) {
// e.w.end()
// if recoverPanicToErr {
// if x := recover(); x != nil {
// panicValToErr(e, x, err1)
// panicValToErr(e, x, &e.err)
// }
// }
// }
//go:noinline -- as it is run by finalizer
func (e *Encoder) finalize() {
// xdebugf("finalizing Encoder")
e.Release()
}
// Release releases shared (pooled) resources.
//
// It is important to call Release() when done with an Encoder, so those resources
// are released instantly for use by subsequently created Encoders.
func (e *Encoder) Release() {
if useFinalizers && removeFinalizerOnRelease {
runtime.SetFinalizer(e, nil)
}
if e.wf != nil {
e.wf.buf = nil
e.wf.bytesBufPooler.end()
}
}
func (e *Encoder) encode(iv interface{}) {
// a switch with only concrete types can be optimized.
// consequently, we deal with nil and interfaces outside the switch.
if iv == nil || definitelyNil(iv) {
e.e.EncodeNil()
return
}
switch v := iv.(type) {
// case nil:
// case Selfer:
case Raw:
e.rawBytes(v)
case reflect.Value:
e.encodeValue(v, nil, true)
case string:
e.e.EncodeStringEnc(cUTF8, v)
case bool:
e.e.EncodeBool(v)
case int:
e.e.EncodeInt(int64(v))
case int8:
e.e.EncodeInt(int64(v))
case int16:
e.e.EncodeInt(int64(v))
case int32:
e.e.EncodeInt(int64(v))
case int64:
e.e.EncodeInt(v)
case uint:
e.e.EncodeUint(uint64(v))
case uint8:
e.e.EncodeUint(uint64(v))
case uint16:
e.e.EncodeUint(uint64(v))
case uint32:
e.e.EncodeUint(uint64(v))
case uint64:
e.e.EncodeUint(v)
case uintptr:
e.e.EncodeUint(uint64(v))
case float32:
e.e.EncodeFloat32(v)
case float64:
e.e.EncodeFloat64(v)
case time.Time:
e.e.EncodeTime(v)
case []uint8:
e.e.EncodeStringBytesRaw(v)
case *Raw:
e.rawBytes(*v)
case *string:
e.e.EncodeStringEnc(cUTF8, *v)
case *bool:
e.e.EncodeBool(*v)
case *int:
e.e.EncodeInt(int64(*v))
case *int8:
e.e.EncodeInt(int64(*v))
case *int16:
e.e.EncodeInt(int64(*v))
case *int32:
e.e.EncodeInt(int64(*v))
case *int64:
e.e.EncodeInt(*v)
case *uint:
e.e.EncodeUint(uint64(*v))
case *uint8:
e.e.EncodeUint(uint64(*v))
case *uint16:
e.e.EncodeUint(uint64(*v))
case *uint32:
e.e.EncodeUint(uint64(*v))
case *uint64:
e.e.EncodeUint(*v)
case *uintptr:
e.e.EncodeUint(uint64(*v))
case *float32:
e.e.EncodeFloat32(*v)
case *float64:
e.e.EncodeFloat64(*v)
case *time.Time:
e.e.EncodeTime(*v)
case *[]uint8:
e.e.EncodeStringBytesRaw(*v)
default:
if v, ok := iv.(Selfer); ok {
v.CodecEncodeSelf(e)
} else if !fastpathEncodeTypeSwitch(iv, e) {
// checkfastpath=true (not false), as underlying slice/map type may be fast-path
e.encodeValue(reflect.ValueOf(iv), nil, true)
}
}
}
func (e *Encoder) encodeValue(rv reflect.Value, fn *codecFn, checkFastpath bool) {
// if a valid fn is passed, it MUST BE for the dereferenced type of rv
var sptr uintptr
var rvp reflect.Value
var rvpValid bool
TOP:
switch rv.Kind() {
case reflect.Ptr:
if rv.IsNil() {
e.e.EncodeNil()
return
}
rvpValid = true
rvp = rv
rv = rv.Elem()
if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
// TODO: Movable pointers will be an issue here. Future problem.
sptr = rv.UnsafeAddr()
break TOP
}
goto TOP
case reflect.Interface:
if rv.IsNil() {
e.e.EncodeNil()
return
}
rv = rv.Elem()
goto TOP
case reflect.Slice, reflect.Map:
if rv.IsNil() {
e.e.EncodeNil()
return
}
case reflect.Invalid, reflect.Func:
e.e.EncodeNil()
return
}
if sptr != 0 && (&e.ci).add(sptr) {
e.errorf("circular reference found: # %d", sptr)
}
if fn == nil {
rt := rv.Type()
// always pass checkCodecSelfer=true, in case T or ****T is passed, where *T is a Selfer
fn = e.h.fn(rt, checkFastpath, true)
}
if fn.i.addrE {
if rvpValid {
fn.fe(e, &fn.i, rvp)
} else if rv.CanAddr() {
fn.fe(e, &fn.i, rv.Addr())
} else {
rv2 := reflect.New(rv.Type())
rv2.Elem().Set(rv)
fn.fe(e, &fn.i, rv2)
}
} else {
fn.fe(e, &fn.i, rv)
}
if sptr != 0 {
(&e.ci).remove(sptr)
}
}
// func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
// if fnerr != nil {
// panic(fnerr)
// }
// if bs == nil {
// e.e.EncodeNil()
// } else if asis {
// e.asis(bs)
// } else {
// e.e.EncodeStringBytes(c, bs)
// }
// }
func (e *Encoder) marshalUtf8(bs []byte, fnerr error) {
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
e.e.EncodeNil()
} else {
e.e.EncodeStringEnc(cUTF8, stringView(bs))
}
}
func (e *Encoder) marshalAsis(bs []byte, fnerr error) {
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
e.e.EncodeNil()
} else {
e.asis(bs)
}
}
func (e *Encoder) marshalRaw(bs []byte, fnerr error) {
if fnerr != nil {
panic(fnerr)
}
if bs == nil {
e.e.EncodeNil()
} else {
e.e.EncodeStringBytesRaw(bs)
}
}
func (e *Encoder) asis(v []byte) {
if e.isas {
e.as.EncodeAsis(v)
} else {
e.w.writeb(v)
}
}
func (e *Encoder) rawBytes(vv Raw) {
v := []byte(vv)
if !e.h.Raw {
e.errorf("Raw values cannot be encoded: %v", v)
}
e.asis(v)
}
func (e *Encoder) wrapErr(v interface{}, err *error) {
*err = encodeError{codecError{name: e.hh.Name(), err: v}}
}